372 research outputs found

    Analysis and Design of a 1.8-GHz CMOS LC Quadrature VCO

    Get PDF
    This paper presents a quadrature voltage-controlled oscillator (QVCO) based on the coupling of two LC-tank VCOs. A simplified theoretical analysis for the oscillation frequency and phase noise displayed by the QVCO in the 1/f/sup 3/ region is developed, and good agreement is found between theory and simulation results. A prototype for the QVCO was implemented in a 0.35-/spl mu/m CMOS process with three standard metal layers. The QVCO could be tuned between 1.64 and 1.97 GHz, and showed a phase noise of -140 dBc/Hz or less across the tuning range at a 3-MHz offset frequency from the carrier, for a current consumption of 25 mA from a 2-V power supply. The equivalent phase error between I and Q signals was at most 0.25/spl deg/

    Chemical Tailoring of Functional Graphene-Based Nanocomposites by Simple Stacking, Cutting and Folding

    Get PDF
    Got your work cut out: Stacking, cutting, and folding have been demonstrated to be a viable approach for the fabrication of robust nanocomposites from large-area graphene films and polymers. This method opens up an effective route towards strong, durable, and multifunctional nanomaterials with fascinating properties

    Life cycle assessment and energy balance of a novel polyhydroxyalkanoates production process with mixed microbial cultures fed on pyrolytic products of wastewater treatment sludge

    Get PDF
    A "cradle-to-grave" life cycle assessment is performed to identify the environmental issues of polyhydroxyalkanoates (PHAs) produced through a hybrid thermochemical-biological process using anaerobically digested sewage sludge (ADSS) as feedstock. The assessment includes a measure of the energy performance of the process. The system boundary includes: (i) Sludge pyrolysis followed by volatile fatty acids (VFAs) production; (ii) PHAs-enriched biomass production using a mixed microbial culture (MMC); (iii) PHAs extraction with dimethyl carbonate; and iv) PHAs end-of-life. Three scenarios differing in the use of the syngas produced by both pyrolysis and biochar gasification, and two more scenarios differing only in the external energy sources were evaluated. Results show a trade-off between environmental impacts at global scale, such as climate change and resources depletion, and those having an effect at the local/regional scale, such as acidification, eutrophication, and toxicity. Process configurations based only on the sludge-to-PHAs route require an external energy supply, which determines the highest impacts with respect to climate change, resources depletion, and water depletion. On the contrary, process configurations also integrating the sludge-to-energy route for self-sustainment imply more onsite sludge processing and combustion; this results in the highest values of eutrophication, ecotoxicity, and human toxicity. There is not a categorical winner among the investigated configurations; however, the use of a selected mix of external renewable sources while using sludge to produce PHAs only seems the best compromise. The results are comparable to those of both other PHAs production processes found in the literature and various fossil-based and bio-based polymers, in terms of both non-biogenic GHG emissions and energy demand. Further process advancements and technology improvement in high impact stages are required to make this PHAs production process a competitive candidate for the production of biopolymers on a wide scale

    Conductivity in organic semiconductors hybridized with the vacuum field

    Full text link
    Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure

    Chemical Recycling of Polyhydroxybutyrate (PHB) into Bio-Based Solvents and Their Use in a Circular PHB Extraction

    Get PDF
    Two novel protocols for the chemical valorization of polyhydroxybutyrate (PHB) were developed, aiming at the production of two bio-based molecules: methyl 3-hydroxybutyrate (MHB) and methyl 3-methoxybutyrate (MMB). Optimized reaction conditions were applied to pure PHB and PHB inclusions inside bacterial cells as starting materials. MHB was synthesized through a single-step catalytic methanolysis, while MMB was synthesized through a three-step process: thermolytic distillation to give crotonic acid (CA), esterification to give methyl crotonate (MC), and oxa-Michael addition of MeOH. The obtained MHB and MMB were tested as solvents for the recovery of PHB itself both from freeze-dried single strain cultures (SSC) and mixed microbial cultures (MMC) with low to medium contents of PHB (22-57 wt %). High PHB recovery was achieved: up to 96 ± 1% through MHB and up to 98 ± 1% through MMB. Extraction from MMC slurry (with a PHB content of 39% on dry weight) was also performed, recovering 77 ± 2% using MHB and 92 ± 2% using MMB. High purities and excellent molecular weights and polydispersity indexes of extracted PHB were obtained with both MHB and MMB. Solubility in water, octanol/water partition coefficients (log Kow), and aerobic ready biodegradability of both solvents were also evaluated

    Lipase catalysed oxidations in a sugar-derived natural deep eutectic solvent

    Get PDF
    Chemoenzymatic oxidations involving the CAL-B/H2O2 system was developed in a sugar derived Natural Deep Eutectic Solvent (NaDES) composed by a mixture of glucose, fructose and sucrose. Good to excellent conversions of substrates like cyclooctene, limonene, oleic acid and stilbene to their corresponding epoxides, cyclohexanone to its corresponding lactone and 2-phenylacetophenone to its corresponding ester, demonstrate the viability of the sugar NaDES as a reaction medium for epoxidation and Baeyer-Villiger oxidation

    Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111)

    Get PDF
    This work was financially supported by EC through the Marie-Curie ITN SUPERIOR (PITN-GA-2009-238177) and IEF MULTITUDES (PIEF-GA-2012-326666), the ERC project SUPRAFUNCTION (GA-257305), the Agence Nationale de la Recherche through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC), and the International Center for Frontier Research in Chemistry (icFRC). The work in Mons is further supported by the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office, and by the Belgian National Fund for Scientific Research (FNRS). J.C. is an FNRS research director. The synthesis team in Switzerland acknowledges financial support by the Swiss National Science Foundation (SNF) and the Swiss Nanoscience Institute (SNI)

    Production of polyhydroxybutyrate by the cyanobacterium cf. Anabaena sp

    Get PDF
    Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass−1 d−1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L−1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L−1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions

    Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular Approach

    Get PDF
    Graphene is a two-dimensional (2D) material holding unique optical, mechanical, thermal and electrical properties. The combination of these exceptional characteristics makes graphene an ideal model system for fundamental physical and chemical studies as well as technologically ground breaking material for a large range of applications. Graphene can be produced either following a bottom-up or top-down method. The former is based on the formation of covalent networks suitably engineered molecular building blocks undergoing chemical reaction. The latter takes place through the exfoliation of bulk graphite into individual graphene sheets. Among them, ultrasound-induced liquid-phase exfoliation (UILPE) is an appealing method, being very versatile and applicable to different environments and on various substrate types. In this chapter, we describe the recently reported methods to produce graphene via molecule-assisted UILPE of graphite, aiming at the generation of high-quality graphene. In particular, we will focus on the supramolecular approach, which consists in the use of suitably designed organic molecules during the UILPE of graphite. These molecules act as graphene dispersion-stabilizing agents during the exfoliation. This method relying on the joint effect of a solvent and ad hoc molecules to foster the exfoliation of graphite into graphene in liquid environment represents a promising and modular method toward the improvement of the process of UILPE in terms of the concentration and quality of the exfoliated material. Furthermore, exfoliations in aqueous and organic solutions are presented and discussed separately
    • …
    corecore